Enabling Semantic Web Programming by
Integrating RDF and Common Lisp

Ora Lassila
Nokia Research Center, 5 Wayside Road, Burlington, Massachusetts, USA

Abstract: This paper introduces “Wilbur”, an RDF and DAML toolkit implemented in
Common Lisp. Wilbur exposes the RDF data model as a frame-based representation system;
an object-oriented view of frames is adopted, and RDF data is integrated with the host lan-
guage by addressing issues of input/output, data structure compatibility, and error signaling.
Through seamless integration we have achieved a programming system well suited for
building “Semantic Web” applications.

1. Introduction

Common Lisp [24] is a programming language that has enjoyed great popularity in the Al
community. Despite its somewhat waning use, it can still be considered one of the most exp-
ressive mainstream programming languages. Because of its somewhat unique integration of
rich data structures with the language itself, Common Lisp offers the interesting possibility of
integrating RDF [18, 19] and DAML [10, 11] data with a programming language, therefore
making it easier to build software that takes advantage of the “Semantic Web” [3].

This paper will discuss “Wilbur”, a Common Lisp -based open source toolkit for RDF and
DAML. Wilbur includes an API (Application Programming Interface) which allows the un-
derlying RDF data to be treated as a frame system, essentially providing an object-oriented
view of the data. The relationship between frame-based representation, object-oriented model-
ing, and RDF is straightforward [20], but an even more interesting aspect is the synergistic po-
tential of integrating a programming language with a frame system [15]. Many frame systems
have offered some type of programming support such as access-oriented behavior [e.g., 13,
pp.30-32] or some other type of “slot daemons” (for example, both CRL and KEE allowed a
Lisp function to be invoked when certain operations were being performed on a slot). Tight in-
tegration, however, would in practice have to involve not only integration of the frame system's
and the programming language's type systems, but also leveraging the programming language's
native programming model and facilities (such as method invocation).

2. RDF Toolkits

RDF data consists of nodes and attached attribute/value pairs. Nodes can be any Web re-
sources, including other RDF nodes. Attributes are named properties of nodes, and their values
are either atomic (text strings) or other nodes. The essence of RDF is this model of nodes,
properties.and.their values. In addition to the node-centric view the RDF model can be seen as

www.manaraa.com

directed, labeled graphs (DLGs). The nodes are the vertices of a graph, and the properties name
the edges. Therefore, if X has a property Y with the value Z, we can think of X and Z linked by
an edge labeled Y, pointing from X to Z.

To make construction of “RDF-savvy” software easier, a number of RDF toolkits have recently
appeared, offering functionality that goes beyond mere parsing. Examples of these toolkits are
Redland [2], Jena [21], and the ICS-FORTH RDFSuite [1]. These toolkits are typically imple-
mented in either Java or C/C++.

“Wilbur” is Nokia Research Center's open source toolkit for RDF and DAML, written in
Common Lisp. Like other RDF toolkits, it offers an API for manipulating RDF data (graphs,
nodes, etc.) as well as parsing functionality (parsers not only for XML-encoded RDF and
DAML but also for “plain” XML [5] since one written in Common Lisp did not exist when the
Wilbur project was started'; it also offers a simple HTTP client API for accessing remote URLSs
for the same reason). Wilbur also offers a frame system API on top of the RDF data API, in-
cluding a simple query language. Wilbur strives for tight integration of RDF data with the in-
trinsic features of Common Lisp.

Generally, Wilbur implements the RDF data model by providing four abstract interfaces (and
their concrete implementations):

1. The class node represents nodes of an RDF graph. Each node may have a URI (Univer-
sal Resource Identifier) string associated with it, in which case we consider the node to
be named; nodes without a URI are called anonymous (the reader is referred to the dis-
cussion of URIs and their printed representation below).

2. A mapping from URI strings to nodes is provided by the class dictionary. The sys-
tem uses a single default dictionary where all named nodes are placed. The unique
mapping from URI strings to node instances allows us to implement strict read/print
correspondence for nodes (described below).

3. The class triple represents labeled arcs of an RDF graph. A triple consists of a sub-
ject (a node instance), a predicate (also a node instance), and an object (either a node
instance or a string, although in the current implementation any Common Lisp object
can be used); each triple also has an associated source (also a node instance), desig-
nating the file or HTTP URL from which the triple was originally parsed.

4. Collections of triples are stored in databases (instances of class db). The upper level
API of the system assumes a single default database, but also exposes a lower-level API
where the database can be specified explicitly (allowing software to be constructed
which makes use of multiple databases). Simple query functionality is provided for se-

' Wilbur’s XML parser (written in Common Lisp) has an interface similar to SAX 1 [22]. The parser was written

with RDF’s needs in mind and does not, for example, support DTDs (except for entity declarations).

www.manaraa.com

lecting triples from a database, similar to the “find” interface of the Stanford RDF API
[23] (not to be confused with the Wilbur frame query language described later).

For debugging purposes, the object inspector of the Macintosh Common Lisp was extended to
allow easy browsing of RDF graphs.’

3. Integration Issues

Our two previous frame systems, BEEF [12, 16] and PORK [17], both addressed the issue of
integrating object-oriented programming with frame-based representation. BEEF (which pre-
dated practical implementations of the Common Lisp Object System) added object-oriented
programming features to a frame system, whereas PORK approached the issue from the oppo-
site direction by taking an object-oriented programming language and adding features of frame-
based representation to it; PORK used the Common Lisp metaobject protocol [14] to extend the
Common Lisp Object System (CLOS).

Wilbur, as a frame system API overlaid on RDF, takes a lower-level approach to integration, by
allowing manipulation of RDF graphs. Future development may still address programming is-
sues taking either the “BEEF-approach” (adding programming features to a frame system) or
the “PORK-approach” (adding frame features to a programming language). In Wilbur, the
RDF/CLOS integration focuses on the following areas:

* cease of use of Common Lisp data structures with RDF,
* issues of input and output of RDF data in a “Common Lisp -friendly” manner, and

* the use of the Common Lisp condition mechanism for signaling unexpected situations.

3.1. Reading and Printing RDF Data

To be able to use RDF data seamlessly in an interactive Common Lisp environment, this data
must have a printed representation which can be read back into a Common Lisp system. Com-
mon Lisp defines this quality, known as read/print correspondence [24, p.509], as follows:

“Ideally, one could print a LISP object and then read the printed representation back in,
and so obtain the same identical object. In practice this is difficult and for some pur-
poses not even desirable. Instead, reading a printed representation produces an object
that is (with obscure technical exceptions) equal’ to the originally printed object.”

The former approach is called “strict read/print correspondence” and the latter “non-strict”;
many Common Lisp data structures (such as lists and strings) are non-strict, whereas some
(such as symbols) are strict. Wilbur provides strict read/print correspondence for nodes.

2 Similar to BBN’s DAML Viewer [7]

3 equal is a Common Lisp predicate for structural similarity.

www.manaraa.com

URIs are used internally throughout Wilbur: they give unique identity to nodes. In order to
avoid having to write (and read) full URIs, which typically are rather long, the system provides
an abbreviated syntax, based on the idea of namespace-qualified names in XML [4]. For exam-
ple, if we introduce a mapping for the prefix “foo” as follows:

"foo" — "http://foo.com/schema#"

then we have

"foo:bar" — "http://foo.com/schema#bar"

Although the XML namespace specification does not specifically define concatenating the ex-
panded form of the prefix with the name part, Wilbur adopts the RDF convention of turning
each qualified name into a single (concatenated) URI string.

Wilbur uses the Common Lisp read macro mechanism to incorporate the expansion of abbrevi-
ated URIs into the reader (i.e., the Common Lisp parser). Any expression of the form
! foo:bar is turned into an instance of Wilbur's node class and placed into a dictionary which
maps URI strings to node instances. This allows references to nodes to be embedded in Com-
mon Lisp source files, thus enabling one to embed RDF Data in compiled (binary) files. Wilbur
uses the notion of a “forward reference” to a node in cases where the abbreviated URI could
not be resolved. When a missing prefix-to-URI mapping is introduced, the system updates the
affected nodes by resolving the URIs. This approach is similar to the forward reference model
of PORK which allowed one to easily construct circular data structures without having to worry
about the order in which named objects were introduced [17].

For printing data structures, Common Lisp defines [24, p.510] that

“When print produces a printed representation, it must choose arbitrarily from among
many printed representations. It attempts to choose one that is readable.”

The print-object method for the Wilbur node class uses any existing prefix-to-URI map-
ping to determine a possible abbreviated form of a node's URI, and subsequently produces a
printed representation which can be read in if necessary.

The Wilbur toolkit has two separate parsers, one conforming to the RDF Model and Syntax
specification [19] and another conforming to the DAML+OIL reference description [11]. The
RDF parser supports all features* of the specification, including reification of complete de-
scriptions, reification of individual statements, and the attribute namespace ambiguity. The
parser is “near-streaming” and is internally based on a state machine where SAX-like parsing
events serve as transition inputs.

*Except “rdf:aboutBachPrefix™ which probably no-one supports.

www.manaraa.com

The DAML parser (class daml-parser) is implemented as an extension of the RDF parser
(i.e., as a subclass of rdf-parser) and adds support for the DAML collection syntax specified

using rdf :parseType="daml:collection".

3.2. Integrating Data Structures

The Wilbur frame API itself is quite simple, basically offering functions for creating frames,
for adding values to a slot, for deleting values from a slot, and for reading a slot’s values.
Frames in Wilbur form graphs when slot values are other frames. Wilbur introduces a query
language for selecting subgraphs from these graphs (in other words selecting sets of nodes from
RDF graphs). Query expressions are patterns expressed as regular expressions with arc labels
(slots, i.e., RDF properties) as atoms, using the following operators and “pseudo-labels”:

* Sequence: the operator : seq matches a sequence of n steps in the graph, consisting of
subexpressions €,.e,,...,.,; the operator : seqg+ is similar except any sequence €,.6,,....€;
for k in [1...n] will match.

* Disjunction: the operator : or matches any one of n subexpressions e, .e,.....¢,.

* Repetition: the operator : rep* matches the transitive closure of subexpression e; the
operator :rep+ is the same as (:seq e (:rep* e)).

* Inverse: satisfaction of (:inv e) requires the path defined by the subexpression e to
be matched in reverse direction.

* Container membership: the atom :members will match any of the rdf: 1,rdf: 2,
rdf: 3, etc. container membership properties.

* Wildcard: the atom :any will match any label.

The Wilbur query language is similar to the BEEF path grammar [16] which, in turn, was a
simplification of the CRL path grammar [8, 9]. Given a “root” node (i.e., a search start point)
and a path (a query expression), Wilbur provides functions for retrieving either the first reach-
able node or all reachable nodes, and for determining whether a path exists between two speci-
fied nodes. These functions make it easy to turn RDF graphs into Common Lisp list structures.
For example, given a DAML collection (constructed as a “dotted-pair” list using the properties
daml:first and daml:rest), the following query expression will turn it into a Common
Lisp list:

(:seq (:rep* !daml:rest) !daml:first)
As mentioned before, the Wilbur DAML parser supports the DAML collection syntax and cor-
rectly generates dotted-pair lists.
3.3. Dealing with Unexpected Situations

The Common Lisp condition system is a powerful mechanism for raising signals when unex-
pectedysituationsparesencountered. When a condition is signaled, instead of reporting an error,

www.manaraa.com

the calling program may choose to catch the signal and allow the execution to continue on from
the point where the signal was raised (or caught). Wilbur defines a rich taxonomy of classes for
various types of unexpected conditions, and takes full advantage of the condition system’s
ability to “ignore” errors. The following figure illustrates this taxonomy (note that condition
classes in the “nox” package are generated by the XML parser):

— nox:pi-termination-problem |

— nox:dtd-termination-problem |

— nox:unexpected-end-tag |

— nox:syntax-error |

— nox:unknown-declaration |

— nox:unknown-character-reference

 nox:malformed-url |

— nox:feature-not-supported |

— — nox:missing-entity-definition |
— nox:missing-definition — —
nox:missing-namespace-definition |
— feature-not-supported |
— about-and-id-both-present |

— unknown-parsetype |

— illegal-character-content |

— container-required |

— out-of-sequence-index |

— duplicate-namespace-prefix |

 cannot-merge |

As a general rule, all errors of the XML parser are signaled as “non-continuable” (i.e., they
abort parsing) whereas all errors of the RDF and DAML parsers are signaled as “continuable”
(using the Common Lisp function cerror) and allow parsing to continue if the user or the
calling program so chooses. The rich taxonomy allows fine-grained mapping of errors to reme-
dial behaviors.

4. Future Work

Several additional features of the toolkit are currently at an experimental stage. These include
an RDF serializer, capable of producing textual XML from triple databases, and a schema vali-
dator, capable of checking triple database consistency against the constraints defined by the
RDF Schema specification [6].

Both the serializer and the validator make extensive use of the query language. For example, in
order to find out whether a slot value (here denoted by x) satisfies the (disjunctive) range con-
straints of a property (here denoted by p), the following query can be executed:

www.manaraa.com

(relatedp x
"(:seq !rdf:type
(:rep* !rdfs:subClassOf)
(:inv !rdfs:range)
(:rep* (:inv !rdfs:subPropertyOf)))
p)

Note that the call (relatedp A B C) determines whether node C can be reached from node
A via path B.

In addition to RDF 1.0 and DAML+OIL, Wilbur will have “plug-in” parsers for the “RDF-like”
DMoz Open Directory format and for the alternate RDF syntax “N3”.

Other future work will focus on DAML and supporting requirements of the DAML community
(for example, we are working on an OKBC interface to the Wilbur frame system), as well as
supporting changes introduced by the W3C RDF Core Working Group for the next version of
RDF.

5. Conclusions

The Wilbur toolkit attempts to create a programming environment for RDF and DAML by
closely integrating some of the representational features with the programming features pro-
vided by Common Lisp and CLOS. Issues in integrating input and output of RDF data are ad-
dressed, as well as compatibility of RDF and Common Lisp data structures. A query language
is introduced to make it easier to select parts of RDF graphs and convert them to Common Lisp
data structures.

Exposing RDF as a frame system and allowing programmers to use the full power of Common
Lisp makes it easier to create “Semantic Web” applications. Using the frame paradigm also
makes it easier to understand RDF (and data models expressed using RDF).

References

[1] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris Plexousakis, and Karsten Tolle: “The ICS-
FORTH RDFSuite: Managing Voluminous RDF Description Bases”, in: S.Staab et al (eds.): “Proceedings of the Sec-
ond International Workshop on the Semantic Web”, May 2001

[2] David Beckett: “The Design and Implementation of the Redland RDF Application Framework”, in: Proceedings of the
Tenth International World Wide Web Conference, WWW 10, May 2001

[3] Tim Berners-Lee, James Hendler, and Ora Lassila: “The Semantic Web”, Scientific American, May 2001

[4] Tim Bray, Dave Hollander, and Andrew Layman: "Namespaces in XML", W3C Recommendation, World Wide Web
Consortium, January 1999

[5] Tim Bray, Jean Paoli, C.M.Sperberg-McQueen, and Eve Maler: "Extensible Markup Language (XML) 1.0 (Second
Edition)", W3C Recommendation, World Wide Web Consortium, October 2000

[6] Dan Brickley & R.V.Guha: "Resource Description Framework (RDF) Schema Specification 1.0", W3C Candidate
Recommendation, World Wide Web Consortium, March 2000

[7] Mike Dean & Kelly Barber: “DAML Viewer”, www.daml.org/viewer/

www.manaraa.com

[8] Mark S. Fox: “Knowledge Representation for Decision Support”, in: L.B.Methlie & R.H.Sprague (eds.): “Knowledge
Representation for Decision Support Systems”, Elsevier, 1985

[9] Mark S. Fox, J.Wright, and D.Adam: “Experiences with SRL: An analysis of a frame-based knowledge representation”,
in: Expert Database Systems, Benjamin/Cummings, 1985

[10] James Hendler & Deborah L. McGuinness: “DARPA Agent Markup Language”, IEEE Intelligent Systems 15(6):72-73

[11] Frank van Harmelen, Peter F. Patel-Schneider and Ian Horrocks (eds.): "Reference description of the DAML+OIL
(March 2001) ontology markup language", working document of the DARPA Agent Markup Language program,
March 2001

[12] Juha Hynynen & Ora Lassila: “On the Use of Object-Oriented Paradigm in a Distributed Problem Solver”, AI Commu-
nications 2(3):142-151, 1989

[13] Peter D. Karp: “The design space of frame knowledge representation systems”, Technical Report 520, SRI International
Al Center, 1992

[14] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow: “The Art of the Metaobject Protocol”, MIT Press, 1991

[15] Ora Lassila: “Frames or Objects, or Both?”, Workshop Notes from the Eight National Conference on Artificial Intelli-
gence (AAAI-90): Object-Oriented Programming in Al, American Association for Artificial Intelligence, July 1990
(also Report HTKK-TKO-B67, Department of Computer Science, Helsinki University of Technology, 1990)

[16] Ora Lassila: “BEEF Reference Manual - A Programmer's Guide to the BEEF Frame System”, Second Version, Report
HTKK-TKO-C46, Department of Computer Science, Helsinki University of Technology, 1991

[17] Ora Lassila: "PORK Object System Programmer's Guide", Report CMU-RI-TR-95-12, The Robotics Institute, Carne-
gie Mellon University, 1995

[18] Ora Lassila: “Web Metadata: A Matter of Semantics”, IEEE Internet Computing 2(4):30-37

[19] Ora Lassila & Ralph R. Sw ick: "Resource Description Framework (RDF) Model and Syntax Specification", W3C
Recommendation, World Wide Web Consortium, February 1999

[20] Ora Lassila & Deborah L. McGuinness: "The Role of Frame-Based Representation on the Semantic Web", Report
KSL-01-02, Knowledge Systems Laboratory, Stanford University, 2001

[21] Brian McBride: “Jena: Implementing the RDF Model and Syntax Specification”, in: Steffen Staab et al (eds.): “Pro-
ceedings of the Second International Workshop on the Semantic Web - SemWeb'2001”, May 2001

[22] David Megginson: “SAX 1.0: The Simple API for XML”, www.megginson.com/SAX/SAX1/
[23] Sergey Melnik: "RDF API Draft", working document, Stanford University, 1999
[24] Guy L. Steele, Jr: “Common Lisp - the Language, 2nd ed.”, Digital Press, 1990

Acknowledgements

The author would like to thank the following individuals for their advice during the Wilbur
project and during the preparation of this article: Jessica Jenkins, Marcia Lassila and Louis
Theran, as well as the three anonymous reviewers whose suggestions proved invaluable.

Although portable to any Common Lisp platform, the Wilbur toolkit was developed entirely
using Digitool’s “Macintosh Common Lisp” (which the author considers to be a fantastic soft-
ware development environment).

Wilbur is an open source software project. More information about the project is available at
http://purl.org/NET/wilbur/.

www.manaraa.com

